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ABSTRACT

In the course of editing musical works, musicologists regu-
larly compare multiple sources of the same musical piece,
such as composers’ autographs, handwritten copies, and
various prints. For efficient comparison, cross-source navi-
gation is essential, enabling to quickly jump back and forth
between multiple sources without losing the current musi-
cal position. In practice, measures are first annotated by
hand in the individual source images and then related to
each other. Our approach automates this time-consuming
and error-prone process with the help of deep learning. For
this purpose, we train a neural network that automatically
finds bounding boxes of all measures in images. A sec-
ond network is trained to compute the similarity between
two measures to determine if they have the same musical
content and should, therefore, be linked for navigation. Se-
quences of outputs from the second network are matched
using Dynamic Time Warping to provide the final proposal
of measure relationships, so-called concordances. In addi-
tion to cross-source navigation, the results can be used to
spot structural differences across the sources which are es-
sential for editorial work, so that musicologists can focus
more on analytical tasks.

1. INTRODUCTION

Modern musical editions are the result of a long musico-
logical process. From the composer’s manuscript to the
printed music book, a musical work usually undergoes a
large number of iterations and minor corrections, occa-
sionally even substantial changes, such as striking or re-
working complete parts [1]. Many of these changes are ei-
ther unintentional—e.g., errors in handwritten copies, ty-
pographical errors by publishers—or generally not docu-
mented in a transparent manner. Musicologists, therefore,
work on this genesis when editing a work and try to record
the chronological order and causalities in their edition cre-
ation process.
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The first step in this process is, therefore, the screening
of the source material to identify differences between the
various sources of a work. To facilitate this process, links
are created between the sources so that editors can quickly
switch back and forth between them. Adequate granular-
ity of these links are usually musical measures, a feasible
compromise between annotation effort and accuracy [29].
Currently, the measures of all sources are manually anno-
tated with bounding boxes and related to each other in a
very time-consuming and error-prone way.

We have automated this multi-stage process by first rec-
ognizing and sorting measures in score images (both hand-
written and typeset) and then linking them according to
their musical content. For this purpose, deep learning was
used to develop a distance metric in an end-to-end fash-
ion without an intermediate representation. The results can
be further processed using classic alignment algorithms
from the MIR community such as Dynamic Time Warping
(DTW). While DTW-based approaches have achieved suf-
ficient quality for practical use, audio-to-score alignment is
still an active field of research [31]. Promising approaches
for the synchronization of scans and sound recordings [5,6]
are currently limited to monophonic and piano music and
have not yet achieved sufficient accuracy for most real-
world scenarios. With the contribution of this paper, we
decrease a potential gap in the "audio – symbolic score –
image" triangle and offer a new way for measure-accurate
alignment across modal boundaries.

2. RELATED WORK

Detecting measures can be seen as a preprocessing step
in Optical Music Recognition (OMR). Therefore, it was
rarely singled out as a dedicated task. While Pedersoli and
Tzanetakis perform document segmentation, they only dis-
tinguish between music scores and text blocks [22]. The
only research we know of, that specifically addresses the
automatic extraction of measures is by Vigliensoni et al.
[30]. In their work, they attempt to extract measures with a
traditional computer vision approach by heuristically find-
ing all bar lines and then joining them into measures. Their
approach requires human intervention for each page and
straight bar lines to work well.

For retrieval of sixteenth-century musical texts, Craw-
ford et al. [4] have recently proposed a two-step proce-
dure. They run an OMR algorithm to obtain an intermedi-



ate format, followed by a second step that uses n-grams and
minimal absent words (MAWs) to find duplicates, related
texts, or parts that have the same musical material. Neural
networks make such intermediate formats partly obsolete
and allow for learning bimodal embeddings end-to-end as
shown by Dorfer et al. [5, 6], who correlate the scanned
music score with a sound recording. For this purpose, syn-
chronization was considered either a reinforcement learn-
ing problem [6] or a metric learning problem [5]. In the
metric learning approach, Dorfer et al. use the pairwise
ranking loss—also known as triplet loss [26]—that draws
triplets from a dataset consisting of an anchor, a positive
example (picture fits the audio) and a negative example
(picture does not fit the audio). This loss function creates
an embedding, where images and audio with the same con-
tent are appear close together, while non-matching images
and audio are placed relatively far apart. Their approach
has successfully been used before in other application do-
mains, such as facial recognition [26]. We resort to a simi-
lar cost function for metric learning (see section 4.2).

As the basis for our detection, we use a convolutional
neural network (CNN). While CNNs are currently an ac-
tive field of research for OMR, the most influential ap-
proaches come from the research area of computer vision.
They are used for many tasks, including image recognition,
semantic segmentation, object detection, and instance seg-
mentation. R-CNN [9] performs object detection by an-
alyzing a large number of heuristically generated region
proposals that are classified into background or one of the
classes of interest. Additionally, the bounding box is re-
fined with regression. R-CNN uses a CNN that extracts
features for object detection. These features are used in a
downstream SVM for classification and regression. Faster
R-CNN [23] improves the process by incorporating both
the region proposal step as well as the classification and
regression into the architecture of the neural network.

CNN-based computer vision approaches are largely
transferable to OMR and actively used for Music Infor-
mation Retrieval: Gallego and Calvo-Zaragoza are using
auto-encoders to remove staff lines [8]. Pacha et al. com-
pare various CNN-based approaches for detecting music
symbols in scores [21]. CNNs can also be used for seman-
tic segmentation for staff-line removal, music and text sep-
aration as well as for layout analysis as shown by Calvo-
Zaragoza et al. [3]. Using U-Nets [25], Hajic et al. do se-
mantical segmentation of handwritten music [10]. Pacha
and Calvo-Zaragoza recognize musical objects in mensural
notation using region-based CNNs [20]. By learning en-
ergy levels that are used as inputs to a watershed algorithm,
Tuggener et al. recognize music symbols [28]. In addi-
tion to the energy levels, the network also predicts class la-
bels and bounding boxes. And finally, Calvo-Zaragoza and
Rizo use convolutional recurrent neural networks trained
with a Connectionist Temporal Classification (CTC) loss
to recognize musical symbols in monophonic music scores
[2]. To simulate non-ideal image conditions, they artifi-
cially distort the images.

3. DATA & ANNOTATIONS

The success of Deep Learning approaches largely depends
on the amount and diversity of data used during training.
Since no dataset of sufficient size was available for mea-
sure recognition or the concordance task, we created a
large dataset ourselves in cooperation with musicologists
and professional musicians.

Our dataset contains measure annotations that were cre-
ated manually by musicologists for digital music editions.
In most cases, the image sources are high-resolution scans
of facsimiles, occasionally supplemented by early music
prints and PDFs exported directly from music engrav-
ing software. Due to an imbalance between handwritten
and typeset scores, we additionally obtained scores from
the IMSLP/Petrucci Music Library while paying attention
to varying image quality, the used engraving mechanism
as well as diverse musical content. We complemented
our collection with 140 pages from the MUSCIMA++
dataset 1 [7, 11].

Our data collection has a total of 8 251 pages with
81 124 annotated measures. The distribution according
to engraving type and the number of systems per page
is given in Table 1. One category is particularly over-
represented: handwritten music scores with just one sys-
tem per page because of a large quantity of full orchestral
scores from operas by Carl Maria von Weber. Book covers,
text pages, and empty pages have zero systems.

Systems per page
Pages per engraving type

Handwritten Typeset

0 413 113
1 5627 932
2 175 553
3 122 175

4 or more 102 39

Total pages 6439 1812

Table 1. Overall distribution of the dataset used.

The accuracy of the measure annotations varies. Since
the exact boundaries are not relevant for musicologists,
they were recorded only roughly. That is why many bound-
ing boxes contain small overlaps with adjacent measures as
shown in Figure 1.

To annotate the measures in the individual pictures, the
Android app Vertaktoid 2 [18] was used. It allows to con-
veniently draw bounding boxes for all measures with a pen
directly on the tablet screen. The results can then be ex-
ported to the MEI format [24] and used as ground truth
training data.

Data coming from digital music editions are partly pro-
vided with concordance annotations between the measures.

1 The measure annotations are published as separate dataset at
https://apacha.github.io/OMR-Datasets/#muscima

2 https://github.com/cemfi/vertaktoid



Figure 1. Examples of cropped measures originating from different sources of the same work. All measures represent the
same musical position, i.e. the same measure, within the work, but are in part extremely diverse in terms of instrumentation,
graphic representation and also image resolution.

4. ALIGNING MEASURE SEQUENCES

Our proposed solution for the given task can be split into
three individual parts. First, we have to find the bounding
boxes of all measure in the score images. Then we need
a metric in order to compute the similarity between two
given measure in terms of musical content. And finally, we
have to compute actual concordances for multiple sources
of the same music.

4.1 Optical Measure Recognition

For automatically detecting measures in complete music
scores, we propose a machine-learning approach with deep
convolutional neural networks and a Faster R-CNN detec-
tor [23]. Faster R-CNN has been shown to work well in a
range of situations, including detecting music objects [21].
In this case, there is just one class of objects that needs to
be detected, and the objects typically cover large portions
of the entire image with little overlap. Our implementation
is based on the TensorFlow Object Detection API frame-
work [14] and freely available online 3 .

We split the dataset randomly into 80% for training,
10% for validation, and 10% for testing. To avoid a bias
toward scores with just one system, we sample the images
equally from the ten categories depicted in table 1. The
only exception are images without systems which are sam-
pled only half as often as the other categories.

We tested the three different backbones, ResNet50,
ResNet101 [13], and Inception-ResNet-V2 [27] and re-
stricted ourselves to these to enable transfer-learning by
initializing the networks with weights trained on ImageNet
which generally improves the learning process, especially
at the beginning. Input images are resized to be no longer
than 1024 pixel on the longest edge. The Intersection over

3 https://github.com/OMR-Research/
MeasureDetector

Figure 2. Two samples of the detection results. Measures
are detected robustly in typeset and handwritten scores
without the need for preprocessing the images.



Union (IoU) measures how well two bounding boxes over-
lap. If two predictions are very close, non-maximum sup-
pression filters the box with the lower score. The IoU
threshold is set to 0.6 and a maximum of 600 objects are
detected per image. These parameters are derived from sta-
tistical analysis of the entire data set and cover > 99.99%
of the dataset.

We evaluated the optical measure detection with the
commonly used average precision (AP) metric, as defined
for the COCO detection challenge [15]. It produces a
single number that measures how well objects were de-
tected. A detection is considered a match with the under-
lying ground truth if the IoU is above a certain threshold.
The trained models achieve very good results with 78.7%
AP (IoU=0.5:0.95) on the test set for the top-performing
model with Inception-ResNet-V2 [27] backbone. A few
samples of the detection output are depicted in Figure 2.

Given that the measure recognition step does not neces-
sarily return the measures of a page in the musically correct
order, we sort them according to the measure numbering
rules outlined by Mexin et al. in [18].

4.2 Metric Learning

Now that the scans of all scores are divided into individ-
ual measures, they have to be compared with each other to
identify equivalent measures. Again, a deep learning ap-
proach is used to learn such a musical similarity metric be-
tween two measures directly from the images. The neural
network is trained to compute an embedding for measure
images so that similar measures are placed in the proxim-
ity of one another in the embedding space. This allows
for convenient comparison of two measures by computing
their distance, e.g., using the L2 norm.

The idea is based on triplet loss [26]: A pair of equiv-
alent measure images from two different sources is drawn
from the list of concordances. We will call them the an-
chor image and the positive image. Additionally, a nega-
tive measure image is drawn from the same source as the
positive image, serving as a counterexample, i.e. having
no musical relation to the anchor or the positive measure
image. Each of these three images is fed separately into
the same neural network, resulting in three k-dimensional
vectors. The loss function is defined as

L = max(d(fa, fp)− d(fa, fn) + α, 0) (1)

with fa, fp, and fn being the resulting vectors from the
network f for the three images and a distance measure
d. Training with this loss function minimizes the distance
from the anchor to the positive image while maximizing
the distance between the anchor and the negative image.
The additional margin α defines how far away the least
dissimilarity should be. Finally, the surrounding max(...)
function ensures that the loss never gets negative.

We chose ResNet50 as the base network and replaced
the usual final average pooling and classification layers by
a fully connected layer with k-dimensional output. (Other
CNN-based networks used for computer vision would
most likely work comparably well.) All measure images

are resized to 512 × 512 pixels but the original width and
height information is also passed to the network as addi-
tional input.

The success of the used loss function depends heavily
on the sampling strategy for the image triplets as discussed
by Wojke and Bewley in [32]. In our context, there are
three specific problems in the dataset:

1. A randomly sampled negative image might acciden-
tally have the same musical content as the two other
images. Those cases are not covered in the concor-
dance dataset since not all measures with equal con-
tent have to be linked together.

2. Intuitively, it seems beneficial to take the previous
or subsequent measure of the positive sample as the
negative measure with the goal of enhancing the
contrast between them in terms of increased distance
in the embedding space. This would make adja-
cent measures more distinguishable. But again, the
chance of these measures having the same content is
higher compared to random sampling.

3. Especially handwritten sources sometimes exhibit
excessive use of measure repeats and other abbrevia-
tions as can be seen in the left part of Figure 1. Such
symbols are meaningless if their immediate context
is not given.

The first two problems could be solved by manually adding
all measures with the same content to the list of concor-
dances. Given the amount of images, we decided against
doing so and rely on rare collisions thanks to the large
number of data. We also discarded the (perfectly valid)
idea of looking at adjacent measures to form the triplets.

The third problem—presence of measure repeats and
abbreviations—has a direct impact on the appropriate
choice of the distance metric d in our loss function; When
using triplet loss, it is common practice to normalize the
embedding vectors. This constraint puts all embeddings
on a k-dimensional hypersphere, leading to some advan-
tages for further processing (see [26]). Furthermore, co-
sine distance is often used to calculate the distances. Both
decisions make it impossible to get an embedding vector
that is equally distant to all other possible vectors. This
very property, however, characterizes the meaning of mea-
sure repeats if no context is given. We, therefore, opted
for no vector normalization and chose the L2 norm as our
distance metric, resulting in

L =

N∑
i=1

[
‖fai − f

p
i ‖2 − ‖f

a
i − fni ‖2 + α

]
+

(2)

for a training batch with size N . To speed up training and
ensure fast convergence we select triplets that violate the
following constraint:

‖fai − f
p
i ‖2 + α < ‖fai − fni ‖2 . (3)

This filter step is performed for each batch during training
and makes sure that only those triplets are used that signif-
icantly contribute to the learning process. It also prevents
the network from overfitting.



4.3 Concordance Computation & Manual
Adjustments

Given the embedding vectors for all measures of each
source of a musical work, we can compare two sources
by computing the distances between all measures from
one source to the other. The resulting similarity matrices
can then be used for dynamic time warping (DTW) as de-
scribed by Müller in [19] to get an alignment path between
the sources as shown in Figure 3.

We implemented the canonical DTW algorithm without
any noteworthy modifications to the core. Allowed step
sizes inside the similarity matrix during path computation
are (0, 1), (1, 0), and (1, 1). It rarely happens that a mea-
sure gets divided into two parts at system or page breaks,
so we penalized steps along a single axis by a factor of 2
to slightly enforce one-to-one mappings of the measures.

The quality of the alignment was evaluated using a
dataset with two sources and given ground truth concor-
dances as outlined in Table 2. We have decided in favor of
this particular dataset because it offers several challenges
that occur only rarely in other works:
Split measures: Some measures are split into two parts at

page breaks. Therefore, one measure of source A
maps to two other measures of source B.

Completely different sections: An entire part of the
piece was replaced in source B. Finding the "cor-
rect" concordance is impossible.

Additional parts: Source B contains a 16-measure Aria
that is not present in the other source.

Missing measure annotations: We also intentionally re-
moved measures from source A to simulate annota-
tion errors.

Pages Measures

Source A (typeset) 250 3098
Source B (handwritten) 532 3176

Total 782 6274

Table 2. Structure of the evaluation dataset.

In the MIR community, DTW is often used to syn-
chronize audio and/or symbolic score sources with each
other [12]. The time resolution of the features in such sce-
narios is usually in the range of several dozen milliseconds.
Deviations in the alignment path are therefore undesirable,
but can often be neglected as long as they do not exceed
certain limits. In our context, however, any deviation from
the ground truth marks a significant error. We took this
into account and defined a very simple score for the over-
all performance:

score = 1−

Number of (x, y) pairs from
alignment not in ground truth

Total number of concordances
in ground truth

(4)

Our evaluation showed 14 errors in relation to 3079 con-
cordance pairs, resulting in a score of 99.545%.

Figure 3. Interface for inspecting the computed measure
concordances. The alignment (white) and ground truth
(blue, only available in evaluation dataset) are plotted over
the currently visible part of the similarity matrix. Mea-
sures of both sources (right) can be compared by moving
a cursor within the matrix (green crosshair). A plot at the
bottom indicates potentially interesting positions.

As pointed out, the remaining 0.455% error rate still
present a non-negligible problem. Therefore, we devel-
oped an interface for manual adjustments to the alignment.
Apart from being able to quickly compare the measures
from two sources as shown in Figure 3, users can define
points in the similarity matrix that have to be part of the
alignment path. Each of these points splits the matrix into
two parts and computes the warping path for each part in-
dividually, ensuring that either the beginning or end of the
path matches the desired point. An event plot at the bottom
of the matrix helps to identify regions with potential errors
by showing where the alignment path is not diagonal, i.e.
taking a step in (0, 1) or (1, 0) direction.

The mentioned obstacles for correct alignment have
been handled successfully by either resulting in a cor-
rect alignment or—in case of substantial structural
differences—indicating a problem that cannot be solved
without human intervention by marking these parts in the
plot below the similarity matrix.

This alignment and adjustment step has to be repeated
for each source in regard to a master source of choice. The
corrected alignment data can then finally be imported into
the tools used by musicologists for their editorial work.

5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach to automate the te-
dious task of annotating and linking measures in hetero-
geneous score images, thereby allowing for cross-source
navigation between measures without losing the current
musical position. We used deep learning to find bound-
ing boxes of measures in score images, learned a distance
metric for measures, and used that to align measures from
various sources, effectively linking equivalent musical po-



sitions across sources. The evaluation showed that our ap-
proach is feasible and solves a real-world problem while
still retaining complete flexibility in case editors need to
make manual adjustments, thanks to an interactive correc-
tion tool.

The presented solution still does not cover all possible
situations that might occur in the editorial process. If the
measure sequences to be compared have a different order,
the alignment fails for these parts if not completely. We
will address this specific problem in the future by identify-
ing such passages and proposing reasonable re-ordering.

Having a musically meaningful distance metric for
measures also allows closing the gap between score images
and symbolic scores. The latter can be rendered with suit-
able engraving software and divided into individual mea-
sures, followed by the steps of our alignment pipeline.
Since audio can also be rendered from symbolic scores,
alignments between all three modalities are possible.

Another interesting application of our distance metric is
the ability to visualize datasets in image fields as shown in
Figure 4. Using dimensionality reduction algorithms such
as T-SNE [16] or UMAP [17], the measures are positioned
such that musically similar measures appear proximate to
one another, giving new insight into a musical piece but
also into the inner workings of the distance metric. For
example, the visualization shows that measure repeats are
placed almost in the center, indicating that their learned
embedding retains the musical property of being close to
basically every other measure in the embedding space.

Figure 4. 46 344 measure images from 15 different
sources of the same piece are projected into a two-
dimensional manifold with the UMAP algorithm. The map
is interactively zoomable.
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