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Abstract

Chorales by Baroque composer Johann Sebastian Bach have been used to teach music
students the basics of music theory for decades. In recent years, this topic has also
become an important field of research for computer scientists: Several approaches have
been developed to automatically write music in the style of Bach. In this research, a
neural network architecture based on musicological literature and the actual human
composition process is proposed. Online evaluations with expert listeners show that
the generated chorales highly resemble Bach’s harmonization style, additional musical
analyses of the chorales show possibilities for further improvement.
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Zusammenfassung

Choräle des Barockkomponisten Johann Sebastian Bach werden seit Jahrzehnten dazu
genutzt, Musikstudierenden musiktheoretische Grundlagen zu vermitteln. In den letz-
ten Jahren ist dieses Thema auch für Datenwissenschaftler/-innen zu einem wichtigen
Forschungsgebiet geworden: Um automatisiert Musik im Stil von Bach zu schreiben,
wurdenmehrere Ansätze entwickelt. In dieser Arbeit wird eine neuronale Netzwerkar-
chitektur vorgestellt, die auf musikwissenschaftlicher Literatur und demmenschlichen
Kompositionsprozess basiert. Online-Evaluationen mit Experten zeigen, dass die er-
zeugten Choräle dem Harmonisierungsstil von Bach sehr ähnlich sind, zusätzliche
musikalische Analysen der Choräle zeigen Verbesserungsmöglichkeiten auf.
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1
Introduction

For many musicians, chorales by late Baroque composer Johann Sebastian Bach are
the epitome of four-part vocal works [4, p. 9]. Bach chorales are a popular object of
study, an integral part of Western music education, and belong to the repertoire of
many choirs. In those chorales, several important aspects of Western music theory
are united: counterpoint, harmony, Baroque stylistic conventions. Thanks to the high
extent of uniformity in his chorales, the rules that make the chorales easy to grasp, and
the large quantity of digitally available chorales, the works of Bach are also an inter-
esting topic for computational music generation. Especially automatic harmonization,
or more precisely producing a four-part chorale given the soprano part, has been an
important field of research for decades.

Although various musicological textbooks deal with the right procedure when writ-
ing Bach chorales, the therein proposed methods have not been used to design a neu-
ral network architecture. Therefore, in this research, a Convolutional Neural Net-
work (CNN) architecture in accordance with the actual human composition process
described in common music theory literature is developed. The proposed method has
already successfully undergone a peer review process and has been accepted by the
scientific community [19].

The generated chorales are evaluated both by a musical analysis and an expert eval-
uation addressing music majors and musicologists. The online evaluation shows that
the results of the network are convincing: In serveral cases, the original Bach chorale
could not be correctly identified in direct comparison to the generated harmonization
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of the same soprano part. Some generated chorales were even believed to be the work
of Bach. In-depth music-theoretical analyses of the generation results give insights
into the capabilities of the trained network model. They point out limitations as well
as room for further improvement and allow hypotheses about the composing style of
J.S. Bach.

Although writing a four-part chorale requires a lot of technical knowledge, “abid-
ing by the rules” is undisputedly not enough to produce a good chorale. Previous
algorithmic approaches have indeed shown that manually gathering up all discover-
able rules that seem to constitute Bach chorales does not lead to results in the style of
the Baroque composer [5]. The voice leading rules known to us are strict but still seem
to allow room for making aesthetic pieces of art. Complex allusions, word-music rela-
tionship, and the courage to break voice leading rules if it serves some artistic purpose
result from Bach’s musical listening habits that manifest themselves in his chorales.
This is something that can’t yet be transformed into computational rules. Music stu-
dents can tell from their first semester music theory lesson: A housework chorale may
not be wrong, but it is surely not comparable to the master’s works.

J.S. Bach himself never made a detailed remark about the music theory behind his
compositional style [4, p. 9]. This work tries to do a step towards finding out if the
subtleties of Johann Sebastian Bach’s abilities are lost - or hidden but discoverable in
his works. If one can’t fully reconstruct them from learning the rules - a self-learning
artifical intelligence may hint at the features that we overlook and reapply them to
new Bach style works.
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2
Background

2.1 Artificial Intelligence and Deep Learning

The following explanations are based on the textbook “Deep Learning” by Goodfellow,
Bengio and Courville [7].

To create computer programs that solve tasks in a human-like manner, several ap-
proaches have been developed. In order to be accessible for computers, information
about the world had to be remodelled in a formal way. Therefore, in early days of
artificial intelligence (AI), real-world notions and rules were hard-coded by humans.
Often, those attempts remained unsuccessful because the material turned out to be too
complex and the programmed rules could not accurately describe the environment.

Machine learning is a collective term for artificial intelligence approaches where in-
stead of using hard-coded rules, the computer algorithm can “acquire their own knowl-
edge, by extracting patterns from raw data” [7, p. 2]. This renders these approaches
suitable for real-life applications. Deep learning is considered a machine learning sub-
discipline (see Fig. 2.1) where computers resolve problems by breaking down complex
tasks into individual parts and subconcepts. Through several layers, a neural network
is able to conceptualize the environment and develop a hierarchy of subconcepts.

A feedfoward neural network, the most common example in the field of deep learn-
ing, corresponds to “a mathematical function mapping some set of input values to
output values” [7, p. 5].
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Deep Learning

Machine Learning

Artificial Intelligence

Figure 2.1: Schematic representation of the relationship between artificial intelligence and
the sub-disciplines.

The approach described in this research uses a deep neural network with a partic-
ular hidden layer structure, so it can develop a hierarchy of concepts to grasp more
abstract ideas and solve the harmonization task. A symbolic representation of the
original soprano part and additional score information serves as an input matrix, the
full original Bach work as an output matrix for the network. Using algorithms like
back-propagation [24] and the Adam optimizer [16], these matrices are used to trans-
form the layers of the network in order to minimize the deviation from the “correct”
chorale during the training process. This way, the algorithm “learns” how to write full
four-part chorales based on the training melodies. Later, the learned abilities can be
examined and evaluated using new melodies as unseen data.

2.2 Compositional Technique of Bach Chorales

The Bach chorales, on which this research concentrates, play an important role in
Western music education. Since those late Baroque works follow an aesthetic perme-
ated by both a harmonic and a counterpoint perspective on music [11, p. 51], they
serve as a suitable object of study to convey the basics of Western music theory. Writ-
ing four-part chorales in the style of Bach is thus covered in many different musical
fields of study and a common excercise in music theory lessons. In order to

• understand the way this harmonization task is carried out musicologically and

• to develop an approach to computationally process the chorales,

one has to take a closer look at the inner structure of those pieces.
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Figure 2.2: Vocal ranges of the parts as used by J.S. Bach [4, p. 62].

Music-theoretical Basics

The chorales usually consist of four independent parts, the soprano, alto, tenor and bass
part. All groups stick to specific pitch ranges, see Fig. 2.2.

Horizontally, these pieces progress mainly in quarter notes; the smallest note value
that Bach uses is a semiquaver. Many melodies and texts that the chorales are based
upon date from the 16th century: J.S. Bach rarely uses contemporary Baroquemelodies,
but instead modifies traditional tunes and adapts them to fit late Baroque stylistic con-
ventions [4, p. 222]. The line endings of those texts correspond to musical phrase
endings - the standardized formulaic expressions found here are called cadences and
can be both interpreted as chord progressions and simultaneous sounding of indepen-
dently moving vocal parts. They are usually marked with a fermata.

Concerning the musical content of the chorale and the movement of the parts there
are numerous rules and restrictions like e.g. the well-known prohibition of parallel
fifths and octaves [4, p. 80] and the resolution of dominant seventh chords.

Musicologically Informed Harmonization

To guide students engaged with this tasks to cope with these voice leading rules, a lot
of musicological works and instruction textbooks have beenwritten over the centuries.

A fundamental recommendation from contemporaries of the Baroque era as well as
modern experts is to start the harmonization process with the lowest voice [4, p. 237,
15, p. 75]. The bass part of Bach chorales is not only considered one of four equitable
voices but also an indicator of the tonal skeleton. It contains information about the
harmonic framework and determines the fundamental structure of the piece.
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As a second step, the middle voices are created. G.Ph. Telemann argues that after
the bass part was written, the alto part should be written before the tenor part so that
the closest possible voicing can be accomplished [26, p. 183]. In some places, there
can be very small leeway for the alto and the tenor part. Oftentimes, there is only
one solution for a valid choice of alto and tenor notes, so they can be very plain and
motionless, only blending into the harmonic progression [4, p. 255]. It is possible that
in certain situations no solution can be found in accordancewith voice leading rules. In
those cases, it’s common to go back and revise certain notes and develop an alternative
approach.

As explained before, the cadences, typically marked by fermatas, should be prepared
in advance to define the harmonic structure more clearly [4, p. 159].

In summary, the following harmonization strategies can be derived from musico-
logical expert knowledge:

• Generate the bass part first given the soprano part

• Support close voicings by choosing the tenor notes after the alto notes

• Give enough context to prepare the cadences at the ends of phrases

• Allow changes to previously generated notes to try alternative solutions

These guidelines will later be used to derive a neural network architecture to carry
out the harmonization task computationally.
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3
Related Work

Several approaches have been developed in recent years to not only automatically gen-
erate symbolic music in general but also to specifically harmonize melodies of Johann
Sebastian Bach.

The first approach was a so called expert system from 1986. It used a set of 270
hand-engineered rules, e.g. constraints for dominant resolutions [5]. The results were
of state-of-the-art quality at that time, but the style of the resulting chorales was not
Bach’s, except for some typical phrases.

Since the late 1980s, various approaches based on neural networks were developed.
Early neural network algorithms that could be fully implemented belonged to a second
wave of neural network research known as “connectionism” [7, p. 13]. Todd [27]
and Mozer and Soukup [21] show that a network can be able to learn and recreate
monophonic melodies exposed to the network. The later approach HARMONET [9]
produces full four-part chorales. It harmonizes melodies by reducing the chorale to a
harmonic skeleton first and later filling it with quaver ornamentations.

In 2002, for the first time, long short-term memory cells (LSTM) [10] were used for
music generation. LSTM networks have special components that enable the network
to memorize values and are thus well-suited to model sequences [7, p. 18]. Eck and
Schmidhuber show that recurrent neural networks based on LSTM cells are suitable to
recreate the structure of blues music [6].

Since the following decade, numerous statistical models were developed. In [1], Al-
lan and Williams present an algorithm that learns from original Bach chorales and
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creates own harmonizations using Hidden Markov models and a probabilistic frame-
work. First, a harmonic progression in quarter notes is developed. As a second step, a
different network creates quaver ornamentations. Although the results feature some
Baroque characteristics, like contrary motion between different parts and harmonic
progressions, there are unsuitable jumps in the individual parts and the time resolu-
tion is limited to quaver notes which is not sufficient to to represent Bach chorales
entirely [4, p. 117].

Also, Boltzmann machines were used to analyse [2] and recreate [18] structure of
polyphonic music. In [25], Suzuki and Kitahara used Bayesian networks to generate
chorales based on the soprano part and examine the advantages and disadvantages
of representing chords with different voicings using the same symbol. They showed
that it is favorable to generate the bass line of a chorale first and that modelling the
chorale with individual notes rather than with chord symbols leads to smoother parts.
The advantages of generating the bass line first in computer systems that generate
chorales were also examined in [28].

In 2016, the so-called BachBot [20] and the DeepBach approach [8] were developed
in parallel. They both use LSTM cells again and take metadata like the metrical po-
sitions of notes and fermatas into account but disregard additional score information
like the time signature and the key signature. Both approaches were each evaluated
with a discrimination test. In [20], the participants had to find the original composition
in direct comparison to the generated chorale. It was shown that in the harmonization
case (alto, tenor and bass part were generated) the participants were more likely to
find the original chorale than in those cases where the full chorale was generated or
only one of the parts was filled in.

A recent contribution to this field of research is the Bach Doodle [13] developed by
technology company Google. Based on Coconet, a deep convolutional model that is
able to repopulate incomplete scores or harmonize melodies [12], it allows users of a
search engine to harmonize own melodies with an interactive sheet music interface
online in the webbrowser.

In this research, a discrimination test is performed, similar to BachBot [20]. Also,
taking into account findings by Suzuki and Kitahara [25] and Whorley et al. [28], the
bass line is generated in advance. But for the first time, in contrast to previous work,
this work establishes the entire network architeture based on musicological insight.
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4
Data Processing

Thefirst step towards this music generation approach is to determine the way in which
symbolic music is to be represented. Bach’s compositions must be transformed into
machine-readable data structures so that they are accessible to a neural network.

4.1 Selection and Preprocessing
To retrieve and process score data, the music21 framework [3] for Python was used.
Music21 is a Python library that provides extensive possibilities to process symbolic
music and a corpus with various pieces by composers such as Johann Sebastian Bach
in MusicXML format. PyTorch [23] was used as machine learning framework.

Of all available chorales, only those with exactly the four voices soprano, alto, tenor
and bass were selected. Pieces with fewer parts and pieces with orchestra accompa-
niment were ignored. The remaining 348 chorales were split randomly: 95% of the
chorales (331 pieces) were used for the training process and 5% (17 pieces) were used
to tune the hyperparameters of the network and to evaluate the results.

Because J.S. Bach sometimes uses the same soprano part to compose several chorales,
some melodies may be present in the training as well as the test dataset. The harmo-
nizations in such cases are still different, so, in accordance with similar generative
systems [8, 20], this circumstance is not further taken into account. Since grace notes
are mostly used for suspended notes, they could be left out. Repeat marks were ignored
since the repeated music contains no additional harmonic information.
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4.2 Data Augmentation
The selected chorales are not uniformly distributed over the key and time signatures,
J.S. Bach seems to prefer keys with less accidentals like C major and G major and their
relative minor keys. 89% of all processed chorales have a 4

4 time signature, see Fig. 4.1.

♯♯♯♯ ♯♯ ♯♯♯♯♯♯♮ ♯♯♯ ♭ ♭ ♭ ♭ ♭ ♭♭ ♭ ♭ ♭♭ ♭
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Key Signatures Time Signatures

#chorales #chorales76 58 47 39 6 0 0 0 2 14 57 49
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Figure 4.1: The distribution of the 348 chorales over the key and the time signature. The most
common key signature has no sharps and no flats which corresponds to the keys of C major
or A minor. The most common time signature is 4

4. Two chorales start with a 4
4 time signature

and later change to 3
4.

The pieces are not transposed to the key of C major or A minor, as it was imple-
mented in prior work [20]. Instead, to augment the dataset, they are transposed to
different keys limited in such way that no part exceeds the vocal ambitus used by
Bach. This has following benefits:

• The resulting chorales always remain singable.

• A voicing at a certain scale degree can now also be applicable to chords on other
scale degrees. E.g., tonic voicings in the key of F major benefit subdominant
chords in the key of C major since it’s the same triad. Transposing all pieces to
the same key would render this impossible.

The augmented dataset consisted of 2583 chorales. Rhythmic augmentation, i.e. ac-
celerating or slowing the note values by a certain factor, was not implemented because

• it would distort the positions of the notes within the measures and

• it would distort the tempo of harmonic progression.
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4.3 Format

In order to feed the chorales into the harmonization algorithm, the music pieces had to
be transferred into a machine-readable data format. As described in Sec. 2.2, J.S. Bach
does not use note values shorter than a semiquaver in his chorales, so a time grid of
semiquavers has been used without disregarding any temporal information. For each
semiquaver step, several musical attributes were computed both for each of the parts
soprano, alto, tenor, and bass and also globally for the piece.

Part Representation

For each voice, the following pieces of information were computed:

• If a new note starts at the given time step, a special pitch value is encoded.

• Rests are treated like notes, encoded as a pitch beyond the pitch ambitus.

• In cases where a note is tied over, a continuation flag is set.

Later, these pieces of information were transformed into a sequence of one-hot en-
coded vectors: For every time step and each possible activity of a part (notes/rest/con-
tinue), a binary value was calculated, see Fig. 4.2. See Tab. 4.1 for an overview of the
part encoding.

� � ��

� � ��

� � �� �� � �

�

� �
3 4 1 32 14 32 4 21 3 4

Figure 4.2: Visualization of the data scheme. It shows 33 one-hot encoded semiquavers of the
soprano part, the boxes on the bottom correspond to the continuation flag.
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Data Soprano Possible Values
…

Pitch C4 {0, 1}
Pitch C♯4 {0, 1}
Pitch D4 {0, 1}

…
Rest {0, 1}

Continued {0, 1}

Data Alto
…

Pitch C4
Pitch C♯4
Pitch D4

…
Rest

Continued

. . .

Table 4.1: The encoding of the symbolic music. Per part, pitch heights, rests, and ties are
computed.

Metadata

Similar to prior work by Liang [20], global score information was also added to provide
more information about the music. Involving all the aspects of the chorale seen in Tab.
4.2 in the data scheme aims at representing the piece in its entirety:

• Fermatas in the chorale denote phrase endings and cadences. Therefore, it’s
crucial to encode the presence or absence of fermatas as these special chord
progressions have to be prepared earlier as suggested by Daniel in [4, p. 159].

• The key signature provides information about the tonal context of the passage
and is encoded as number of sharps.

• Fundamental differences in effect of the music are often caused by the arrange-
ment of pulses within the measure. The time signature adds information about
these inner structures of the measures.

• Different beats within a measure can be stressed and unstressed depending on
the time signature. To account for that, the position within the current mea-
sure was added.

• At Bach’s time, equal tempering was not yet established, in the available tuning
systems, different keys had their unique characteristics [4, p. 11]. After the aug-
mentation of the data set, the original key can’t be unambiguously reconstructed.
To maintain a possible “key character”, a pitch offset was added after the data
augmentation, referring to the distance to the original fundamental tone.
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Metadata Possible Values
Fermata {0, 1}

Time Signature 3/4 {0, 1}
Time Signature 4/4 {0, 1}
Time Signature 3/2 {0, 1}

Time Position in Quarter Notes {0, 0.25, 0.5...}

Pitch Offset in Semitones Z

Key Signature ♮ {0, 1}
Key Signature ♯ {0, 1}

…
Key Signature ♭♭ {0, 1}
Key Signature ♭ {0, 1}

Table 4.2: An overview of additional information about the score that is included.

The resulting semiquaver grid values contained four individual part data arrays and
one global array (see Tab. 4.2). With these pieces of information it’s possible to fully
represent all important aspects of the chorale and feed it into the network.
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5
Network Architecture

Following the advice ofmusicological literature on the human composition process, the
harmonization workflow should be divided into two steps. Knowing only the soprano
part, the bass part (and thus the harmonic framework) should be created first. Once
the entire bass part has been written, the middle parts, i.e. the alto and tenor notes,
are produced in a second step. This is the basis for the architecture of the network.

5.1 Generation Process

To implement the above, the computational generation process was split into three
different consecutive networks:

• A first network generates the bass line.

• A second and a third network generate the middle part notes alternatingly, tenor
note after alto note for each time step.

Bass Generation

The first network takes a frame of the soprano part and the metadata as well as prior
bass notes as an input. The frame size has to be sufficient to prepare cadences as sug-
gested by Daniel [4, p. 159], so the frame size was added to the set of hyperparameters
(see Sec. 5.2) and finally set to 8 quarter notes for future and prior notes each.
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Figure 5.1: Scheme of the bass part generation. The one-hot encoded data is fed into several
fully connected layers to generate the output for a single time step. Only one hidden layer
was used, because deeper networks didn’t increase the performance. Afterwards, the context
window is shifted by one step into the future. The context size shown in blue is deliberately
reduced compared to the actual implementation to enhance readability.

Eight quarter notes equal 32 semiquaver time steps, so the bass event bi depends on:

• the soprano part in a local context of ±32 time steps si−32:i+32

• the metadata in a local context of the same sizemi−32:i+32

• the 32 previous bass events bi−32:i−1

The probability model for predicting bi is:

p(bi |si−32:i+32,mi−32:i+32,bi−32:i−1)

See Fig. 5.1 for a graphical representation of the bass generation process.
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Alto and Tenor Generation

For the generation of the middle parts, two alternating networks were used. As before,
they take the additional score information and the soprano part but also the entire
bass line and the prior middle part notes as an input. Therefore, the alto prediction ai

depends on:

• the soprano and metadata context si−32:i+32,mi−32:i+32 as above

• the prior and future bass events bi−32:i+32 generated in the first step

• all prior alto ai−32:i−1 and tenor events ti−32:i−1

The resulting probability model is:

p(ai |si−32:i+32,mi−32:i+32,bi−32:i+32,ai−32:i−1, ti−32:i−1)

The tenor note also depends on the alto note generated in the current time step:

p(ti |si−32:i+32,mi−32:i+32,bi−32:i+32,ai−32:i , ti−32:i−1)

5.2 Implementation Details
To find the optimal hyperparameters for the three networks, random searches and grid
searches in immediate surroundings of best random search results were performed.
The architecture finally used had the following properties:

• a learning rate of 0.5 × 10−3 with a decay of 0.99 every 30 epochs

• one single hidden layer with the size of 650

• a context size of 32 semiquaver time steps

• a dropout of 0.5 before the hidden layer and the output layer

Input and output layer dimensions are defined by the individual pitch range of each
part. The output layers use softmax nonlinearities to create probability distributions,
all other layers use SELUs [17]. Adam [16] was chosen as learning rate optimization
algorithm and, as implemented in previous approaches [20], cross-entropy was chosen
as loss function.
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5.3 Beam Search

A human composer has always the option to adjust and rework certain parts of their
work. In a position in which no continuation of the chorale part can be found that
complies with the voice leading rules, the composer can always revise previous notes.

In generative computer systems, that doesn’t necessarily apply. When determining
each note of a sequence from start to finish based on local probabilities only, the pos-
sibility for revision is not inherent. In those “greedy” cases, the total probability - the
product of the predicted local probabilities p(bi |·), p(ai |·) and p(ti |·) for each time step
i depending on the local context - is not always the optimum.

As suggested in related work in Bach chorale harmonization [20], a beam search [22,
p. 195] algorithm was implemented to maximize this total probability

P =
N∏
i=0

p(bi |·) p(ai |·) p(ti |·).

The beam search algorithm enables the neural network to maintain multiple high-
probability paths of the search tree while generating the sequence. The number of
candidates is limited to minimize runtime and memory requirements. Those candi-
dates can then serve as alternative solutions that can be further expanded when one
solution leads to a dead end with a low total probability. Up to now, this has not been
implemented and evaluated in similar research.

See Fig. 5.2 for a graphical example of the beam search algorithm implemented in
the bass part generation. Alto and tenor parts are generated similarly.
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Figure 5.2: Example of beam search for the bass part with beam width of 2 in comparison to
a greedy approach. P is the total probability of the branch, p the conditional local probability.
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5.4 Training Results

As outlined in Sec. 2.1, the concept of machine learning is the derivation of knowledge
from raw data and their reapplication to new and unseen data. This holds conceptual
challenges: Given the necessary capacity in terms of size and number of training it-
erations, a deep neural network starts learning explicit characteristics of the training
dataset or even memorizes it as a whole instead of generalizing and developing ab-
stract concepts. In this case, the error measure on the training set decreases but the
error on previously unseen data increases - this is called overfitting. [7, p. 112]

To avoid the negative effects of overfitting, the number of training iterations was
determined by means of the overall probability P of the whole test dataset, see Sec.
5.3. The first model (hereinafter called model (1)) was trained before implementing the
beam search algorithm. The likelihood of the entire sequence, including the bass line
and the middle parts, was calculated for the test set at every training iteration. Every
10 iterations, the state of the model with its parameters was stored. At the end, the
parameter set that provided the highest sum of all total probabilities was used as the
final model. Model (1) has proved to perform best in the described sense after beeing
trained for 870 epochs.
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Figure 5.3: This chart shows the beam widths for model (2) for bass part and middle parts that
lead to the highest overall probabilites of the chorales of the validation data set.
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Model (2) was developed later, after implementing the beam search algorithm and
further improving the hyperpameters. To find the optimal beam width for each piece,
the model was chosen with the following method:

1) 31 bass notes were available as a starting note, fitting in the vocal range of a
bass singer. So first, the beam widths bs1 ∈ {1, 2, ..., 31} were successively ap-
plied to generate 31 bass line candidates. The bass line with the highest overall
probability P was then chosen.

2) This bass line was used to generate 24 possible middle parts with beam widths
bs2 ∈ {1, 2, ..., 24} starting with the alto part. The best candidate was then se-
lected as final result.

For model (2), the model trained for 580 epochs provided the highest overall proba-
bility and was thus selected as final model.

It can be observed that in most cases the beam widths bs1 and bs2 that lead to the
best results were a beam width of 1 or a beam width of 2, see Fig. 5.3. In only 7 of 17
pieces, the beam width with highest probability was equal to or higher then 6, so in
many cases, a greedy algorithm (beam width 1) had the best overall likelihood. This
shows that the approach of dynamically choosing an individual beam width for bass
part and middle parts per piece leads to results with a higher overall probability then
an approach using a fixed beam width.
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6
Generation Results

After training, the resulting model was used to generate chorales from original Bach
soprano parts and other melodies to examine the capabilites of the model. Audio and
score files of the generated chorales and other generation examples can be reviewed
online at the project homepage: http://www.cemfi.de/research/bachnet .

6.1 Original Soprano Part

The soprano part of the piece BWV 103.6, “Was mein Gott will, das gscheh allzeit”, was
used for the first example, see Fig. 6.1. It was generated by model (2), see Appendix B
for a chorale generated by model (1). At first glance, the resulting chorale exhibits
similarities to original Bach chorales. Lydia Steiger, a music theory teacher at the
Detmold University of Music, provided the following remarks after analyzing chorales
generated by both models:

• In several places, voice leading rules were violated.

• The algorithm lacked sensitivity for musical tension and therefore sometimes
choses a plain solution in places were a more sophisticated composition would
have been more appropriate.

• The network uses commonmusical phrases used by J.S. Bach. In some places the
algorithm splits these phrases arbitrarily across the voices.

http://www.cemfi.de/research/bachnet
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Figure 6.1: Generated harmonization given the melody from “Wasmein Gottwill, das g’scheh
allzeit” (BWV 103.6).

The implications of this analysis are discussed in Ch. 8.

6.2 Broader View and Limitations

Video Game Melody

To explore the limitations of the model, other melodies were used. As an instance,
the piece “Gourmet Race” was harmonized, a popular tune from the 1996 video game
“Kirby Super Star”. Only a fermata at the end was added to denote the ending of the
piece.
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Figure 6.2: Gourmet Race from Kirby Super Star – Jun Ishikawa, 1996
Generated chorale.

Progressing mainly in quarter notes and featuring passing tones (see the soprano
part in bar 3), themelody exhibits some characteristics of late Baroque stylistic conven-
tions, see [4, p. 228]. The generated chorale sounds subjectively pleasing, see Fig. 6.2.
To even improve the result, following adjustments to the original melody have been
applied to adapt the melody to the style of Bach’s soprano parts [4, p. 225]:

• More fermatas were added every two bars because they were perceived as break-
points (bar 2, 4 and 6).

• Chromatic modification were made to obtain guiding tones (F♯ instead of F♮ in
bar 4 and 7).
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Figure 6.3: Gourmet Race from Kirby Super Star – Jun Ishikawa, 1996
Generated chorale with guiding tones and fermatas that were added in advance.
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The result sounds more convincing, see Fig. 6.3, since, in contrast to the above
example, the following can now be observed:

• In bar 2, at the added fermata, an authentic cadence i64 −V −V 7 − i can be seen.

• In the last bar, after the chromatic modification, a picardy third V − I occurs.

• The deceptive cadence in bar 6 becomes an authentic cadence at the added fer-
mata. It can be speculated that the network has learned to harmonize phrase
ends without fermatas with a deceptive cadenc in order to maintain the ten-
sion - to what extent this is applicable to Bach’s compositional style cannot be
resolved at this point.

Japanese Folk Song

The third piece discussed in this chapter is a traditional japanese folk song called
“Sakura, Sakura” (Fig. 6.4). Although it has a key signature with no sharps or flats,
as if it were in the key of A minor, it does not fit into late Baroque style (see Sec.
4.2). The melody was transposed up a fourth to better fit the typical tonal range of a
soprano part and later transposed down again, along with the three other generated
parts. Fermatas were added at the end of every second bar at the half note.

The following observations can be made:

• The network finds ways to handle the unknown structure of the melody in most
places. In the final bar before the last chord, passing tones in the bass occur and
lead to a dominant chord that is resolved correctly to the final tonic chord.

• Occasionally, the network does not find a valid solution. In bar 8, the phrase
ends on the fermata on a sixth chord after exhibiting dissonant chords early in
bar 8 - in bar 6, the phrase even ends on a dissonant major seventh chord, which
is uncommon in Bach chorales [4, p. 161].

These results suggest that realistic bach-like chorales can only be obtained if the
soprano part follows closely late Baroque stylistic conventions. Best results require
original Bach soprano parts.
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Figure 6.4: Sakura, Sakura (traditional japanese folk song)
Generated by the neural network.
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7
Online Evaluation

Evaluating computer generated music in an objective manner is an intricate task: Al-
though voice leading mistakes were found in the musical analysis of the generation
results, an artistic-aesthetic evaluation is still left to humans since the perceived de-
gree of similarity to J.S. Bach’s chorales is subjective.

7.1 Design
To obtain information about the perceived similarity to original chorales, an A/B test
was performed via a browser based Web Audio Evaluation Tool [14]. Due to the size
of the test dataset, 17 generated examples were available.

For each generated example, a pair consisting of

• the artificially generated chorale and

• the original counterpart by Bach based on the same soprano part

was prepared with a music notation program. The repeat marks were removed from
the original works to adapt the structure of the generated pieces. Both the generated
example and the original composition were then exported as audio files, sheet music
was not provided. A playback tempo of 90 beats per minute and a virtual organ as
synthesizer timbre were chosen in order to archieve a more natural sound.

For each listener, only 5 pairs were randomly chosen to maintain the listener’s at-
tention. Participants first had to give a self-assessment about their familiarity with
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Bach chorale harmonization. The participants were then asked to identify the original
Bach composition for each of the 5 pairs in direct comparison. Each question could
be skipped. Response time and number of playbacks was not limited, modification of
previously answered questions was not possible.

The network was evaluated in two stages.

1) First, a test was conducted without beam search using model (1) and address-
ing music majors of the Detmold University of Music. Since Bach chorale har-
monization is covered in all musical fields of study, a high degree of familiarity
with Bach chorale harmonization could be presupposed.

2) After improving the network and implementing beam search, model (2) was
developed. Addressing professional musicologists, members of the musicology
specialist group “Fachgruppe Freie Forschungsinstitute in der Gesellschaft für
Musikforschung e.V.”, not only could expert knowledge concerning Bach and
harmonization questions be presupposed, but also a high familiarity with the
exact Bach chorales that the network was trying to emulate.

Both groups were contacted via e-mail.

7.2 Results

In total, 834 answers were given, 283 in the first, 551 in the second stage. 68 music
majors and 127 musicologists participated.

Of those 283 music major answers, in 61% the music majors could correctly identify
the original Bach chorale. 39% misjudged the artificially generated pieces to be com-
posed by Bach or skipped questions (see Fig. 7.1). Even though vast experience and
expertise in Bach chorale harmonizations can be expected, still in only 66% of the mu-
sicologist’s answers the real Bach piece was correctly identified in direct comparison.
In 34% the artificially generated harmonizations was chosen or the participant gave no
answer.

Looking at the evaluation results per knowledge level as seen in Fig. 7.2, more de-
tailed insights can be gained. The best performing music major group was the group
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Correctly identified the chorale written by Bach No answer
Misjudged the generated harmonization to be the work of Bach

Figure 7.1: Summarized results of the online evaluation. The chart shows how both partici-
pating groups scored in identifying the original Bach chorale given a generated harmonization
as well as the master’s work.

with the highest self-assesment, giving 77% correct answers. Interestingly, concern-
ing the music majors as well as the musicologists, the group with the lowest self-
assessment performed above average: In the case of the musicologists, the group was
the best performing, giving 100% correct answers, although it should be noted that
since the participants were experts, the lowest self-assesment was seldom selected. In
both stages, the knowledge level groups who gave the least correct answers were the
groups with the middle self-assesment of 3. One can speculate that this is because it
was also the default position in the web interface.
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Figure 7.2: Results broken down by the self-assesment given. 5 corresponds to a high famil-
iarity with Bach chorale harmonization, 1 corresponds to a low familarity.
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Figure 7.3: Results of the online evaluation per piece.

Examining the numbers per piece, one can see that some chorales were considered
more often the original than others. Pieces exceeding the 50% incorrect threshold are of
particular importance in this scenario: For those pieces, a participant cannot correctly
recognize which is the original chorale and which was generated (random guessing).

5 of 17 generated chorales (BWV 153.1, 352, 177.5, 405 and 155.5) could not be cor-
rectly identified by the majority of the music students, as shown in Fig. 7.3. Interest-
ingly, also 3 of 17 generated chorales (BWV 153.1, 363 and 103.6) could not be correctly
identified by more than 50% of the musicology experts. The chorale BWV 103.6 was
even preferred over the authentic work, with 40% of the professional musicologists
considering the generated chorale the original and only 33% answering correctly -
which is even better than the aforementioned random guessing ratio.

Summarizing the findings, it can be said that in many cases a bach-like sound of
the generation results could be achieved. Several chorales can’t be correctly identified
even in direct comparison to the original work.
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8
Discussion and Future Work

Summary

The performed online evaluation shows that in many cases the generated chorales
sound bach-like even to experts. Thanks to a musicologically informed neural network
architecture, the network is able to extract patterns and characteristics from original
Bach chorales and to reapply them to new sopranomelodies. The algorithmwas able to
derive composition concepts from the original compositions to create new harmoniza-
tions of which several were even considered more “authentic” than the actual works.

The results suggest that it’s advisable to take the human creation process into ac-
count when dealing with automatic composition and harmonization based on neural
networks.

Suggestions for Improvement

Although some generated pieces are even prefered over the original work, they are
not flawless in terms of voice leading. To further improve the outlined methods, mu-
sicological advice could be followed even more rigorously. A possible implementation
could incorporate the anticipation of cadences: As suggested by Daniel [4, p. 159],
ends of phrases could be prepared in advance as a preconnected step. Those exten-
sions should aim at improving the obedience to voice leading rules and also the abil-
ity of the network to understand musical tension and follow accordingly. Since high
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quality results are only feasible if the input format matches Bach’s compositional style,
overcoming this restriction to only Bach chorales could also be the focus of future re-
search. Pieces of different styles could be used for training - in order to make a more
practical application for musicians possible.

Future work could also focus on understanding how the network works internally.
As also suggested in [20], the question how the network develops abstractable mu-
sical skills could be examined more thoroughly. As outlined in Ch. 6, insights into
the capabilities of the neural network can be used to gain understanding of Bach’s
compositional style.

Furthermore, the question why several generated chorales are preferred over the
original composition is of interest concerning the reception history of Bach chorales
that is heavily influenced by the use of his works for study purposes [11, p. 78].
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A
Appendix Online Evaluation

In this appendix chapter, additional information about the online evaluation is pre-
sented, namely the design of the web interface and the full results.

A.1 Web Interface

Figure A.1: An image of the web interface. The two alternatives were randomly assigned the
buttons A and B.
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Figure A.2: An image of the self-assesment dialog box.
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A.2 Full Evaluation Results

Music Majors

BWV Correct Misjudged Skipped Not Correct Correct Misjudged Skipped
269 9 2 2 31% 69% 15% 15%
153.1 8 10 0 56% 44% 56% 0%
363 12 4 4 40% 60% 20% 20%
248.53 14 3 1 22% 78% 17% 6%
352 8 9 2 58% 42% 47% 11%
177.5 7 8 2 59% 41% 47% 12%
102.7 12 1 0 8% 92% 8% 0%
84.5 12 1 1 14% 86% 7% 7%
373 11 5 2 39% 61% 28% 11%
309 13 2 1 19% 81% 13% 6%
403 9 3 3 40% 60% 20% 20%
405 5 5 4 64% 36% 36% 29%
126.6 13 5 2 35% 65% 25% 10%
315 13 2 3 28% 72% 11% 17%
155.5 7 8 4 63% 37% 42% 21%
103.6 8 3 4 47% 53% 20% 27%
271 12 1 3 25% 75% 6% 19%
Total 173 72 38
Avg. 61% 25% 13%

Table A.1: The results of the online evaluation per piece for the music students.

Self-Assesment Correct Misjudged Skipped Total Correct Misjudged Skipped
1 7 3 0 10 70% 30% 0%
2 22 12 8 42 52% 29% 19%
3 23 17 8 48 48% 35% 17%
4 70 28 19 117 60% 24% 16%
5 51 12 3 66 77% 18% 5%
Total/Avg. 173 72 38 283 61% 25% 13%

Table A.2: The results per self-assesment level.
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Musicologists

BWV Correct Misjudged Skipped Not Correct Correct Misjudged Skipped
269 26 5 4 26% 74% 14% 11%
153.1 15 9 6 50% 50% 30% 20%
363 16 10 7 52% 48% 30% 21%
248.53 23 7 6 36% 64% 19% 17%
352 21 5 7 36% 64% 15% 21%
177.5 18 12 4 47% 53% 35% 12%
102.7 20 6 4 33% 67% 20% 13%
84.5 21 6 3 30% 70% 20% 10%
373 27 3 2 16% 84% 9% 6%
309 28 3 4 20% 80% 9% 11%
403 21 3 7 32% 68% 10% 23%
405 28 2 2 13% 88% 6% 6%
126.6 23 6 2 26% 74% 19% 6%
315 22 6 4 31% 69% 19% 13%
155.5 21 10 2 36% 64% 30% 6%
103.6 10 12 8 67% 33% 40% 27%
271 23 7 4 32% 68% 21% 12%
Total 363 112 76
Avg. 66% 20% 14%

Table A.3: The results of the online evaluation per piece for the music majors.

Self-Assesment Correct Misjudged Skipped Total Correct Misjudged Skipped
1 11 0 0 11 100% 0% 0%
2 20 6 3 29 69% 21% 10%
3 97 57 51 205 47% 28% 25%
4 194 36 19 249 78% 14% 8%
5 41 13 3 57 72% 23% 5%
Total/Avg. 363 112 76 551 66% 20% 14%

Table A.4: The results per self-assesment level.
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B
Appendix Analysed Chorales

In this appendix chapter, the second chorale that was analysed bymusic theory teacher
Lydia Steiger is showed to provide an additional ouput example generated bymodel(1).
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Melody: J.S. Bach
Arrangement: BachNet (2019)

Ich ruf zu dir, Herr Jesu Christ (71)
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Figure B.1: The piece BWV 177.5 as generated by the neural network presented in the way
it was given to Lydia Steiger for the analysis. The number 71 refers to the internal numbering
system.
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