DECENTRALIZING MUSIC, ITS PERFORMANCE, AND PROCESSING

Axel Berndt

Department of Simulation and Graphics
Otto-von-Guericke University, Magdeburg, Germany
aberndt@isg.cs.uni-magdeburg.de

ABSTRACT

A musical piece is not one single entity. It is a collabo-
ration of multiple simultaneously acting entities—its parts.
Each one is subordinate to local and global compositional
and performative structures. Based on this view of music
we developed an agent-based music system approach, im-
plemented in the MuSIG engine, which turned out to be a
versatile and intuitive basis for a variety of tasks. Its capabil-
ity to render expressive performances made it a valuable tool
to investigate historically informed practices and for music
production. Its ability to transition different performance
styles seamlessly and in realtime, even with varying musi-
cal material, is most interesting for entertainment purposes
such as game scoring.

This paper reports of the MuSIG engine’s architecture,
development, and our experiences. It further describes how
a core problem of musical nonlinearity, namely the gener-
ation of reasonable transitions, can be tackled through the
decentralized approach.

1. BACKGROUND

Imagine the following situation. An orchestra, sitting in a
recording studio, plays music for a film. The conductor
is the only one who sees the picture sequence and directs
accordingly. As the scene changes a different character of
expression is required, a faster tempo, louder dynamics, ag-
gressive accentuation. He changes his conduction, the mu-
sicians react and adapt their performance. Now imagine,
this is not for a film but a computer game. The performance
takes place during the course of the game. The orchestra is
represented by synthesizers and samplers, the conductor by
a music engine. Although the music is precomposed it is
not fixed in its arrangement, performance, and character of
expression. It is able to organically follow the progress of
the interactive scene in the way film music does.

The MuSIG engine, of which this paper reports, has been
developed as such a module for game engines. It imple-
ments techniques for the expressive performance of MIDI-
based music data and their flexible adaptation [4]. In prin-
ciple, all musical material is precomposed but automatically
rearranged, edited, adapted to the demands of the interactive

context. The biggest challenge therefore is to find musi-
cally adequate adaptation methods. A well-known situation
is, that algorithmic intervention is perceived as inadequate
interference which injures musical coherency. This is not
originated from the algorithms in the first place.

It already begins with the way musical data is formally
represented. The waveform, for instance, is totally ineligi-
ble to convey information on musical structure, polyphony
or even single notes—think of the difficulties to find clear
onsets in a wave signal, not to mention tone endings. Other
representations, like the MIDI format [11]] or MusicXML
[12], allow to distinguish notes, at least, but still reveal noth-
ing about the aesthetic structures they constitute or the way
they should be performed. How to make musically mean-
ingful decisions or processing on this basis? For the MuSIG
engine two basic design decisions were authoritative:

1. a musical piece is not one single entity but an assem-
bly of multiple coordinated entities (parts/channels),

2. the MIDI data are complemented by additional struc-
tural and performative information.

This led to an agent-based approach to music representa-
tion, performance, and processing. The resulting architec-
ture turned out to be useful not just for audiovisual media
scoring. It constitutes a valuable tool in the context of a mu-
sicologically inspired project to study historically informed
performance practices through an analysis-by-synthesis ap-
proach. The built-in performance features were extended,
accordingly, to allow for a more flexible and adequate shap-
ing of human-like performances. These features encapsulate
plenty of low-level work and allow fast and flexible creation
of expressive performances. The engine became valuable as
a nonautonomous performance system and music produc-
tion tool even beyond musicological applications.

This paper details key aspects of the MuSIG engine’s
conceptual approach and implementation that prove bene-
ficial to its versatility and supportive to the development
of musically meaningful processing techniques. Section [2]
explains the aims which led to our conceptual design deci-
sions. The engine’s architecture is introduced in Section
It constitutes the interface to an agent-based music architec-
ture which is detailed in Section 4} The engine’s approach

mailto:aberndt@isg.cs.uni-magdeburg.de

to musical nonlinearity for interactive media scoring is ex-
plained in Section[5] Subsequent to a discussion in Section
[6] the paper is concluded in Section[7]

2. AIMS

The purpose of music engines in games is to handle musi-
cal data and play them back. Some also include arrange-
ment techniques to adapt musical expression to the interac-
tive context [1, 2, [9]. To seize further potential beyond the
arrangement of fixed musical snippets, some systems allow
to render different expressive performances of a composi-
tional material [10] and the generation [[15} |8]] or recombi-
nation [17]] of musical data.

In case of the MuSIG engine the musical material, whe-
ther composed or automatically generated, is given as MIDI
data, likewise several performance descriptions that can be
rendered into expressive MIDI sequences. The engine im-
plements techniques to transition different such performan-
ce styles, orchestrations, and even different versions of a
compositional material (e.g., a plain version, an ornate, and
several others with differing melodic or rhythmic proper-
ties).

To evade conflicts with the performative and composi-
tional structure, these transitions are grounded on the princi-
ple to vary as few and as little as necessary for a smooth mu-
sical connection. To further strengthen musical coherence
and conclusiveness, all transitional changes are integrated
into the structural context. This means that any changes are
aligned with meta-structural features like phrase borders or
emphatic stress-points.

All this runs interactively while the music is playing
back. This is facilitated by an agent-based approach. An
agent represents a musical part or MIDI channel. Each agent
acts autonomously and coordinates itself with the other a-
gents through globally accessible metadata.

In fact, the outer part of the engine implements no global
performance rendering or processing techniques. It rather
acts as an interface to the agents, allows to trigger their
built-in processing functionalities, and to control their real-
time performance. The engine’s application programming
interface (API) conceals all this from the application devel-
oper and provides intuitive high-level control comparable to
that of a CD-player. No specialized musical knowledge is
needed to handle the engine controls.

3. ENGINE ARCHITECTURE

The MuSIG engine basically consists of three parts: the API,
a list of music objects, and the Player to play them back.
Figure |1| visualizes the engine’s architecture. This Section
details API and Player. The structure of the music objects is
described separately in Section [4]

Application

E load delete play stop transition
R |
S g Pointer to music object
2 3
.UL_J, 6 o Pointers to scheduled tasks
3 |e
= | 8 | music 3 |
= -
2
B Playback Management
- Threads Thread

MidiShare Scheduler

Figure 1. MuSIG engine’s basic architecture.

All implementations were done in C/C++. MidiShare
was used as MIDI API [7]]. It furthermore takes over the re-
altime event scheduling. The TinyXML library was applied
for XML processing [[13].

To keep the engine controls as simple as possible, the
API offers just a hand full of very high-level function calls.
Musical data can be loaded into the music objects list and
deleted from it. Those which are present in the list are avail-
able for playback. Starting and stopping playback are sim-
ple function calls, likewise the transitioning to different per-
formance styles or musical data.

The play and transition functions pass a reference (more
precisely a C pointer) through to the Player, which points
at the respective item in the music objects list. Further pa-
rameters of these functions indicate the performance style,
in which to render the raw MIDI data before playing them
back, and the playback starting position or maximal transi-
tion duration, respectively. This is, concisely said, all what
the application programmer has to handle. Everything else
runs under the hood.

Even the next stage, the Player, implements no process-
ing functionalities. These are provided by the agents (chan-
nel objects, see Section) which are contained in the music
objects. The Player’s task is to trigger them. It furthermore
starts playback threads and the management thread. Both
are functions which, once called, autonomously send their
next call to the MidiShare realtime scheduler. The Player
protocols all scheduled function calls (typeProcess events in
MidiShare jargon). This makes the Player the predestined
interface to interrupt, continue, and terminate this behavior.

Before starting playback, the Player calls the music ob-
ject—thereby its channel objects/agents—to render the de-
sired performance style into expressive MIDI data. There-

after, playback is done by the agents themselves. Each one
runs in its own independent realtime thread, represented by a
playback task. This is not only needed to enable each agent
performing with its own independent tempo. It is also the
key to bypass the tempo/timing concept of the MIDI stan-
dard and introduce our own expressive musical timing con-
cept which allows for continuous tempo transitions, asyn-
chrony, random imprecision, and self-compensating micro
deviations. A detailed description of our timing concept and
its implementation is given in [3].

No eventsﬂ from the actual MIDI sequence were sent to
the scheduler. Instead, the playback function is called when
such an event is due. It then triggers the agent’s event pro-
cessing for this and each succeeding event with the same
due date. This decentralization of the event processing en-
ables each agent to run in its own playback mode. Two such
modes are provided up to now: the standard MIDI mode and
the Vienna mode. The latter generates some additional con-
troller messages for a proper playback on the Vienna Instru-
ments software sampler [14]. More explanation on playback
modes is given in Section 4]

The agent’s event processing returns a pointer at the next
due event. Its MIDI tick date is converted into a millisecond
value [3]. The corresponding playback function call/type-
Process event is sent to the scheduler and logged in the
Player’s scheduled tasks list.

This list is maintained by the management task which
checks regularly for dispatched entries to erase them and
keep the list short. This is not just for memory efficiency, but
to keep track of the playback state. If the list is empty, that
means no further call is sent to the scheduler, the playback
is finished. In this case the management function resets the
Player and terminates. Otherwise, its next call is scheduled
at a certain interval, e.g., twice a second.

Keeping track of pending and dispatched playback calls
is further necessary to properly intervene in the playback.
For interruption, all pending events have to be cancelled.
This is, of course, not possible with events which have been
dispatched already and with those which may be processed
currently. Their pointers are not valid anymore. Such incon-
sistencies can be excluded through the management task.

Everything the management function does up to now can
be done much easier, of course. The ultimate reason to in-
troduce this mechanism is to easily ensure consistency and
exclusiveness of data access. The management thread runs
at the same interrupt level as the playback threads. No agent
can execute event processing on its MIDI sequence when
the management function is processed. Thereby, external
intrusion can be processed without corrupting proper play-
back. This is, for instance, used in the final part of mu-
sic transitions (described in Section [5)). Just after all agents
have created a new MIDI sequence in a separate buffer (dur-

The term ‘event’ is used synonymical for MIDI message.

Original MIDI Data

Structure and Performance Metadata

Music Object

Array of 256 Pointers to Port Objects

Array of 16 Pointers to Channel Objects

Port Object

Flat MIDI Sequence
Playback Buffer MIDI Sequence
2 further MIDI Sequence Buffers

Pointers to channel related metadata

Channel Object

Playback Context Information

sends MIDI messages 4

y

MIDI Output

Figure 2. The MuSIG engine’s music architecture.

ing playback) it is then shifted into the playback buffer at
once—just like double buffering in computer graphics [6].

4. MUSIC ARCHITECTURE

One all-embracing sequence of MIDI messages may suffice
to play a musical piece back in a media player but it is in-
sufficient for any further processing. Working on one single
part would necessitate a filter operation to find relevant mes-
sages first. The implementation of channel-exclusive play-
back modes, which handle MIDI data differently, would be
unnecessarily inconvenient. Furthermore, MIDI messages
are low-level information; the problems to make musically
meaningful decisions on this basis have been mentioned.

A musical piece as it is represented within the MuSIG
engine is more than its pure MIDI data. These are organized
according to an architectural concept to differentiate global
and local information and to easily perform processing tasks
in their most local context without filtering overhead. This
is even closer to the way music is structured—not one all-
comprising ‘flat’ entity but multiple part-wise contributing
entities. MIDI data are further complemented by additional
information on compositional structure and expressive per-
formance. The general concept for music architecture is il-
lustrated in Figure

MIDI Data
Structure Data | Performance Data \—

Temporally Fixed Global Data L

= o
8 8 | Temporally Fixed Local Data
= 3c

= o
8 8 | Temporally Fixed Local Data
=l 3c

Global Header

Y
QD
=
—
w

Temporally Fixed Local Data

Local
Header

Figure 3. The organization concept of musical data.

The global class for a musical piece is the music object
class. It loads a MIDI file and corresponding structural and
performative metadata which are supplied by two separate
XML files. Both types of metadata are structured in accor-
dance to their area of applicability (see the schematization
in Figure [3). Some are global others relate to a single part;
some are general header information (e.g., an articulation
style which formally defines articulation instructions), oth-
ers are temporally fixed (e.g., articulation instructions ap-
plied to notes). The latter are organized in sequentially or-
dered lists.

Structural metadata give information on the formal
segmentation of the musical piece. Three segmentation lay-
ers are differentiated (with increasing temporal granularity):
the section, phrase, and figure layer. The latter compares
to motifs regarding its average temporal extent. Further
melodic, rhythmic, and harmonic information can be in-
cluded to concretize structural properties. If these informa-
tion are globally defined, they represent the formal struc-
ture of all parts. However, if any part defines its own local
properties, they dominate possibly contrary global ones for
this particular part. This principle applies equally to perfor-
mance information.

Performance metadata are formal descriptions to con-
vert the raw MIDI data into expressive versions. Tempo, ru-
bato (micro-deviations), asynchrony, ‘human’ imprecision,
dynamics, metrical emphasis, and articulation are included.
Where to do a ritardando, accelerando, de-/crescendo, how

strong, which notes to articulate staccato, tenuto, legato and
so forth, all this is explicitly given in a formal high-level
representation. It can be symbolic output of external perfor-
mance generation systems ([[16] gives an overview of such
systems) or manually edited. Multiple performance variants
can be defined. Performance transition techniques (see Sec-
tion[5)) allow to combine them interactively during playback.

The music object class implements methods to load the
XML data, check them for consistency, repair inconsisten-
cies, and optimize them for fast access during realtime play-
back. Further preprocessing splits the original MIDI se-
quence into several sequences which contain only the MIDI
events of single MIDI ports. Instances of the port object
class are created and their pointers stored in the music ob-
ject’s designated array. In the same way the port objects split
their sequence into channel-exclusive sequences and instan-
tiate channel objects—the agents.

The channel object first unites noteOn and correspond-
ing noteOff events into MidiShare typeNote events. This is
not only closer to music notation, it lowers the effort to ar-
ticulate them, later on. Furthermore, each channel object
has to create an endTrack event, because the original MIDI
sequence usually contains only one which goes to channel
0 after splitting. The resulting MIDI sequence is stored as
the basis for any further music processing, e.g. for perfor-
mance rendering. It remains unchanged from now on. This
means, each expressive version will be a direct derivative of
this clean initial version. The music object further passes
pointers through to its channel objects which enable direct
access to locally relevant structure and performance meta-
data. This defines the agent’s perception of its environment.
Further references, e.g. to other agents, are easily possible
but not used yet (see Section [6)).

Now, all necessary information (a clean flat MIDI se-
quence and performance descriptions) are given to render
expressive MIDI sequences. Therefore, each channel object
creates a copy of its flat sequence. This is modified and
complemented by further MIDI messages to integrate all
performance aspects except for timing (i.e., tempo, rubato,
asynchrony, random imprecision). The resulting sequence
is put into the playback buffer. Thereafter, the channel ob-
ject’s playback context information are initialized. These
comprise

a pointer at the next due event,

a flag to indicate whether the channel has to loop or
stop when the endTrack event is reached,

— a synchronization date which is used to compensate
numerically caused timing drifts,

— apointer at the current performance style which is still
needed for tick-to-millisecond conversion (timing is
rendered in realtime),

— a playback mode switch, and

— MIDI controller numbers to indicate those which are
designated to control the Vienna Instruments sampler.

The event processing differs depending on the playback mo-
de. Two modes are currently implemented. The standard
MIDI mode sends most upcoming events as they are, where-
as, the Vienna mode sends additional controller messages
for a proper playback on Vienna Instruments and filters some
other inconvenient events. Additional controllers adjust, for
instance, the articulation of each note.

However, both modes differ in some respects from a
conventional media player’s MIDI playback. First of all,
only events, which are implemented by synthesizers and
samplers, are sent. Markers, lyrics etc. are skipped. This re-
duces MIDI traffic. Furthermore, fypeNote events need to be
split back into noteOn and noteOff to play them back. The
noteOn event is created and sent directly when a fypeNote
occurs, the corresponding noteOff is created and inserted
into the playback buffer sequence. When it occurs, it is sent
and removed from the sequence again. Another major dif-
ference to usual MIDI playback lies in the way dynamics are
implemented. Note-wise dynamics are, of course, still ren-
dered into typeNote/noteOn velocity attributes but for sub-
note-dynamics MidiShare typePrivate events are used. They
are translated either into usual channel Volume messages or
respective controller events for the Vienna mode by the play-
back event processing. Output events are sent to MidiShare
for immediate output and the pointer at the succeeding due
event is returned to the playback task.

Each channel object is self-responsible for its playback,
playback modes can differ between channels, even their tim-
ings can be autonomous. This kind of decentralization con-
tinues in all further music processing. Each channel renders
its expressive MIDI sequences on its own and when play-
back is manually stopped, the call is propagated through the
music object and port objects down to each playing chan-
nel which itself stops all sounding notes and resets its play-
back information. Over the metadata pointers, which pri-
marily refer to channel-related structure and performance
data, each channel has the possibility to navigate to other
channels’ and global information. This is, for instance, used
when all agents are performing synchronously with the same
global tempo but autonomously with distinctive local mirco-
variations.

5. MUSICAL AND PERFORMATIVE
NONLINEARITY

The MuSIG engine’s approach to musical nonlinearity is
based on precomposed material. The music is given, and
through its performance metadata also several ways to per-
form it. One such performance style does not only describe
how to shape tempo, dynamics, articulation and so on. It

further includes instructions about which channels should
be playing and which not. In this way, each performance
style can feature a distinctive instrumentation and even ex-
clusive musical material or combinations of it. An example:
one style performs a melody on channel 2 and its accom-
paniment on channels 3 and 4; another style may play the
same accompaniment but a different melody on channel 1.
It is furthermore possible to mute notes within a channel’s
MIDI sequence—a kind of a ‘mute’ articulation. This is
used, for instance, to introduce little variants and ornamen-
tations. One performance style may include trills while an-
other plays the same notes straight.

For interactive media scoring, it is not only feasible to
play music back in these expressive performance styles but
to transition them dynamically during playback. However,
generating such transitions cannot be done naively. Expres-
sive performance and orchestration have the task to empha-
size chosen aspects of the compositional structure to make
them clearer to the listener. Performance transitions have to
go along with this. They have to be likewise embedded in
the structural context in order not to conflict with it. Good
transitions seem to be motivated not only by external influ-
ence but by the music itself.

In this regard, the MuSIG engine’s decentralized con-
cept prove to be particularly beneficial. Each agent/channel
creates its own locally optimal transition. Thereby, the re-
sult keeps polyphonic properties of the musical structure and
both involved performance styles (the current and the next).
Nonetheless, a first task has to be done globally—the cre-
ation of a working-copy of the current performance style.
Then, each agent is called to compute and apply its changes
to transition to the target style. An application-given latency
constraint ensures that all agents keep reasonably together.
It sets the maximal duration until they have to reach the tar-
get style.

First, each agent analyzes the structural context within
the latency frame to find the strongest structural border. This
will be the transition’s destination. Possible destinations are
(with decreasing valence): the beginning of the next section,
phrase or figure (endings are only needed when the agent
shall finish its performance), the last barline or beat within
the frame, or the end of the latency frame itself which marks
the worst case if no information on the music is given, even
no time signature. The weaker the destination, the more
important is a sufficiently long transitional period (up to the
whole latency) to implement changes as subtle as possible.

However, changes are not made to MIDI data in the first
place but to the working-copy of the current performance
style. Only in the end, when the transitioning performance
style is ready, a new MIDI sequence is rendered. The tran-
sitioning style keeps the current style’s data up to the desti-
nation date, followed by the target style’s remaining perfor-
mance data. Changes can be applied to the time frame from
the current playback position up to the maximum latency

date. Having the transition represented as a self-contained
performance style opens up the flexibility to create further
transitions to other styles even if the current transition is still
playing (transition out of a transition). Later during play-
back, when the agent reaches the endTrack event, before
starting over with the next loop iteration, it will switch away
from the transition style to the actual target style and the
corresponding expressive MIDI sequence.

The agents edit only their local performance data. Tem-
porally fixed global data are made local, i.e., copied into
the local domain, therefore. This enables the agents to han-
dle polyphonically divergent situations (differing destina-
tion points and valences) to the local optimum. Only the
global tempo map needs to be treated globally to ensure
overall synchrony. All further actions depend not only on
the valence of the destination point but also on the goal
which an agent pursues in the transition. Three categories
can be distinguished:

1. cueing a muted agent,
2. ending a performing agent,
3. transitioning a performing agent.

Furthermore, two classes of performance features have to be
distinguished. Point features relate to single notes (e.g., ar-
ticulations and metrical accentuation). Temporally exten-
sive features embrace non-zero time intervals (e.g., tempo
and dynamics instructions).

Transitioning point features, like articulations of single
notes, over a certain period makes no sense. Instead, these
features are directly switched to the target style’s setting.
This change takes place at the cue point of newly starting
agents (1st category) and at the transition’s destination point
for both other categories. This direct change may be con-
spicuous but through its alignment with structural proper-
ties it is not perceived as inappropriate. It rather seems to
acknowledge interpretational intention which has been pre-
pared by the transition of temporally extensive features.

However, transitioning temporally extensive features is
more complex. Here, it shall be described using the exam-
ple of dynamics. Each performance style defines for each
agent a dynamics map—a global one can be made local, as
mentioned above. A dynamics map is a temporally ordered
list of dynamics instructions. One such instruction I, has the
form (simplified)

I, = (dn>V1,,7V2n>sn)

with d,, being the MIDI tick date of the instruction. Its range
is terminated by the succeeding instruction /4. Instruc-
tion I, describes a gradual dynamics change in the interval
[dn,dyy1) from dynamics value vy, to v,,. Both are given
either as MIDI velocity values or symbolic representations
such as f, mp, pp etc. The shape of this change can be linear,

potential or sigmoid. Even the sigmoidal characteristic does
not have to be balanced but can tend along the time axis to
either describe very determined crescendi and decrescendi
or rather neutral ones. This property is set by the term s,,.
Basically, all temporally extensive features can be formally
represented in this way. This facilitates a homogeneous al-
gorithmic approach to transition them. Therefore, the last
current-style instruction in

[currentPlaybackPosition, destinationDate)

is taken and designated as /;. If none exists in this interval,
one is created at playback position. It takes over the dy-
namics at this point in vy, and its predecessor’s target value
in vp,. The predecessor’s corresponding attribute is set to
v1,, accordingly. I; constitutes the starting point for all tran-
sitional changes. As target instruction, designated ., ,the
first target-style instruction in the interval

[destinationDate, latencyMaximumDate]

is taken. Again, if none can be found, one is inserted at
destination date. Both instructions, I; and I;| embrace the
destination date in the way d; < destinationDate < d; 1.

In contrast to this, for starting and ending agents (cate-
gories 1 and 2) the instruction dates are constrained to

d; = currentPlaybackPosition

d;+1 = destinationDate.

For the starting case, vy, is set to 0. For the ending case,
vi,,, and vy, are set to 0, and any succeeding instructions
after ;1 are removed from the dynamics map.

If the destination date is set on the last barline or weaker
(i.e., it could not be aligned with section, phrase or figure
borders), the dynamics transition will smoothly fade to the
target value, i.e. vo, = vy,,,, in either category. With de-
creasing valence, the fading characteristics s, are set more
neutral.

In case of the strongest possible destination point (sec-
tion border), vy, is set to O for newly starting agents, and re-
mains unchanged for categories 2 and 3. This means, a start-
ing agent begins directly with the new section, an ending one
finishes the current section, a transitioning agent finishes the
current section in the old style and begins the next section
directly in the target style. Such a direct change/switch is,
of course, only possible with section borders because they
close a musically coherent episode and begin another.

Phrases and figures are formally less concluding. Newly
starting agents can still cue in directly but the other cate-
gories need to be treated more carefully. Ending agents (cat-
egory 2) imitate the gesture of ending dynamically. There-
fore, attribute vy, is reduced to 5/6 for phrase endings and
2/3 for figure endings. This reinforces its concluding char-
acter. The term s, is adjusted, accordingly, to mold a very
determined characteristic.

For category 3 transitioning, the agent changes attribute
vy, in accordance with the condition to vary as little as nec-
essary. Therefore, the dynamics situation in the target style
at d; 1 is analyzed. If the dynamics are continuous, vy, is set
to vy, resulting in a smooth transition. But in the discon-
tinuous case, i.e. a stepwise dynamics change, vy, is set to
that corner of the step which is nearest to its current value.

Finally, all agents render new MIDI sequences into sep-
arate buffers. These are then shifted into the playback buffer
at once via the management function.

Through complying not only with compositional struc-
ture but also with preexistent performance features within
the latency boundaries, the transition will still be reason-
able even in the absence of structural metadata. However,
the transition to higher-value structural borders is, of course,
generally more determined and felicitous.

This approach allows even to finish playback fairly rea-
sonable. This can be done by transitioning to a special per-
formance style which mutes all agents and defines a slow
tempo. The transition results in a decrescendo and ritar-
dando to the determined destination point. This works most
conclusive in case of very strong structural borders (e.g.,
section ending) and identical destination points for all a-
gents. Even weak destination points would suffice; the re-
sulting transition will be a decrescendo al niente, i.e., a com-
plete fadeout.

6. DISCUSSION AND FUTURE PERSPECTIVES

Several conceptual and implementation aspects of the
MuSIG engine deserve closer analysis and discussion. First
of all it has to be stated that the engine, since MIDI-based,
does not provide instrumental sounds. It sends MIDI mes-
sages. The system’s synthesizer or sampler creates the
sounds. These can differ extremely from system to system.
All this is well-known. But it brings a particular problem
for performance rendering. Articulations may not always
be satisfying. Dynamics may work good on some systems,
on others it may be unbalanced—such differences were sys-
tematically analyzed by [5]. According to the quality and
liveliness of the instrumental sounds it can even be advis-
able to adjust the musical tempo. For the less lively sounds
musicians/producers tend to choose a faster tempo to con-
ceal these problems from the listener and to avoid boredom.

Such adaptation cannot be done automatically up to now,
with one exception. The MuSIG engine offers two playback
modes, the standard MIDI mode and the Vienna mode. The
latter ensures a proper performance on the Vienna Instru-
ments sampler. Many samplers and synthesizers necessitate
such specialized playback modes to seize their full potential.
The use of MIDI’s breath controller for richer articulations
and timbral variations is a typical example.

To provide homogeneous sound quality on all systems,
more is needed than the engine and the music data. Sample

data or even synthesizer software have to be enclosed. The
engine itself requires not much hardware capacity. MIDI
processing is done very fast and the musical data (MIDI and
metadata) take just a few hundred kilobyte. But sound gen-
eration usually requires lots of resources. When applying it
in the context of a computer game, it competes with other
tasks like physics simulation and game-ai. This limits the
number of instruments and their sound quality considerably.

Furthermore, although the computation of performance
transitions is relatively uncritical it is nonetheless subject to
soft realtime demands. Playback goes on while the transi-
tion is created. Some of the early transitional changes may
be missed when the transitioning sequence is shifted into the
playback buffer. This can cause a little discontinuity when
dynamics or tempo are to be changed gradually. Although
theoretically possible, we could not create discontinuities in
experiments which were big enough to be actually audible.
In fact, human performances feature a bigger variance than
these discontinuities ever showed. Nonetheless, to provide
more stability a certain value can be added to the current
playback position from when on the transition starts. That
value can be set to the average or worst computation time of
past transitions. Before rendering the transition sequence,
the dates of all passed changes can also be adapted rela-
tively easy. The agent concept can also help to tackle these
problems. Up to now, all channels create their transition
data and MIDI sequence but switching over is done glob-
ally. This can already be done by each channel itself. Only
the transition of timing properties has to be done globally.

Moreover, our agent-based approach to music perfor-
mance and processing features a far bigger potential. The
agents know little of their environment—up to now only the
metadata. A future extension will be to connect them with
other agents. This enables self-organizing behavior which
is particularly interesting for realtime interaction with the
performance. Imagine a group of street musicians. One of
them, jostled by a passing person, gets out of synchrony.
This means technically that his synchronization date chan-
ges. His colleagues notice the problem after a while and
begin to adapt their synchronization date gradually, likewise
does the mistaking player.

This is just one example from the performance field.
Knowing the environmental context is even more important
when the agents shall not only perform one piece of music
but transition to a completely different one (different music
object). Each channel object needs a reference to its cor-
respondent in the target music object to have access to its
melodic material. The idea is to bend the current melodic
shape to get a proper connection to the target music with-
out loosing structural (e.g., motif establishing) features. The
underlying scale for the varied melody must follow from a
globally determined harmonic modulation. To coordinate
all channels, it is necessary to set a global target point for
the transition, e.g., the last of all local target points to ensure

sufficient conditions for all agents. Finally, each agent sets
a jump mark to change over from the current to the target
music, that means, when its corresponding target channel
object takes over.

7. CONCLUSION

This paper presented an approach to a realtime music per-
formance and arrangement engine based on a decentralized
view of music. This resulted in a specific architecture of mu-
sical data and an agent-based approach to polyphonic per-
formance and processing. It is furthermore the key to a very
flexible approach to interactive musical nonlinearity.

All this has been implemented in the MuSIG engine. It
was first conceived as a game engine module with an intu-
itive APIL. But it became obvious that the engine can also
serve well as a tool and experimental environment for ex-
pressive performance research. As such it allows to cre-
ate performative characteristics in a high-level description
language. The realtime arrangement methods even allow to
combine multiple performance styles interactively.

The MuSIG engine and its decentralized concept will
also be a prospective basis for future developments like, e.g.,
compositional transition techniques.

8. REFERENCES

[1] S. Aav, “Adaptive Music System for DirectSound,”
Master’s thesis, University of Linkoping, Department
of Science and Technology, Norrkdping, Sweden, Dec.
2005.

[2] A. Berndt, K. Hartmann, N. Rober, and M. Masuch,
“Composition and Arrangement Techniques for Mu-
sic in Interactive Immersive Environments,” in Audio
Mostly 2006: A Conf. on Sound in Games. Pited,
Sweden: Interactive Institute/Sonic Studio, Oct. 2006,
pp- 53-59.

[3] A. Berndt and T. Hihnel, “Expressive Musical Tim-
ing,” in Audio Mostly 2009: 4th Conf. on Interac-
tion with Sound. Glasgow, Scotland: Glasgow Cale-
donian University, Interactive Institute/Sonic Studio
Pited, Sept. 2009, pp. 9-16.

[4] A. Berndt and H. Theisel, “Adaptive Musical Expres-
sion from Automatic Realtime Orchestration and Per-
formance,” in Interactive Digital Storytelling (ICIDS)
2008, U. Spierling and N. Szilas, Eds. Erfurt, Ger-
many: Springer, Nov. 2008, pp. 132-143, LNCS 5334.

[5] R. B. Dannenberg, “The Interpretation of MIDI Veloc-
ity,” in Proc. of the Int. Computer Music Conf. (ICMC).
Tulane University, New Orleans, USA: International
Computer Music Association, Nov. 2006, pp. 193—
196.

[6] J. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes, Computer Graphics: Principles and Practice,
revised 2nd ed., ser. The Systems Programming Series.
Addison-Wesley, July 1997.

[71 GRAME, MidiShare Developer Documentation, Com-
puter Music Research Lab., France, Jan. 2006, version
1.91.

[8] M. Hoeberechts and J. Shantz, “Realtime Emotional
Adaptation in Automated Composition,” in Audio
Mostly 2009: 4th Conf. on Interaction with Sound.
Glasgow, Scotland: Glasgow Caledonian University,
Interactive Institute/Sonic Studio Pited, Sept. 2009, pp.
1-8.

[9] M. Z. Land and P. N. McConnell, “Method and appa-
ratus for dynamically composing music and sound ef-
fects using a computer entertainment system,” United
States Patent Nr. 5,315,057, USA, May 1994, filed
Nov. 1991.

[10] S. R. Livingstone, “Changing Musical Emotion
through Score and Performance with a Compositional
Rule System,” Ph.D. dissertation, The University of
Queensland, Brisbane, Australia, 2008.

[11] MIDI Manufacturers Association, The Complete MIDI
1.0 Detailed Specification, Nov. 2001, version 96.1
2nd edition.

[12] Recordare LLC, “MusicXML Definition,”
http://www.recordare.com/xml.html [last visited:
Dec. 2009], Nov. 2009, version 2.0.

[13] L. Thomason, “TinyXML,”

http://www.grinninglizard.com/tinyxml/index.html
[last visited: Dec. 2009], May 2007, version 2.5.3.

[14] Vienna Symphonic Library GmbH, “Vienna Instru-
ments,” http://vsl.co.at/ [last visited: March 2010],
2010.

[15] I. Wallis, T. Ingalls, and E. Campana, “Computer-
Generating Emotional Music: The Design of an Affec-
tive Music Algorithm,” in Proc. of the 11th Int. Conf.
on Digital Audio Effects (DAFx-08), Espoo, Finland,
Sept. 2008, pp. 7-12.

[16] G. Widmer and W. Goebel, “Computational Models of
Expressive Music Performance: The State of the Art,”
Journal of New Music Research, vol. 33, no. 3, pp.
203-216, Sept. 2004.

[17] R. W. Wooller and A. R. Brown, “Investigating mor-
phing algorithms for generative music,” in Third Iter-
ation: Third International Conference on Generative
Systems in the Electronic Arts, Melbourne, Australia,
Dec. 2005.

	1 Background
	2 Aims
	3 Engine Architecture
	4 Music Architecture
	5 Musical and Performative Nonlinearity
	6 Discussion and Future Perspectives
	7 Conclusion
	8 References

